462 research outputs found

    Top-Down Approach to Unified Supergravity Models

    Full text link
    We introduce a new approach for studying unified supergravity models. In this approach all the parameters of the grand unified theory (GUT) are fixed by imposing the corresponding number of low energy observables. This determines the remaining particle spectrum whose dependence on the low energy observables can now be investigated. We also include some SUSY threshold corrections that have previously been neglected. In particular the SUSY threshold corrections to the fermion masses can have a significant impact on the Yukawa coupling unification.Comment: 19 pages, uuencoded compressed ps file, DESY 94-057 (paper format corrected

    Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance

    Full text link
    We point out that it is possible to associate the electroweak Higgs boson with the pseudo-Goldstone boson of broken scale invariance, thus resolving the hierarchy problem in a technically natural way. We illustrate this idea with two specific gauge models. Besides being consistent with all currently available experimental data, both models maintain the predictive power of the standard model, since the first model has only one additional parameter beyond the standard model, and the second has the same number of free parameters as the standard model.Comment: 11 pages, discussion added, the version to appear in Phys. Lett.

    Production of neutral MSSM Higgs bosons in e+ee^+e^- collisions: a complete 1-loop calculation

    Get PDF
    We present the first complete 1-loop diagrammatic calculation of the cross sections for the neutral Higgs production processes e^+e^-\ra Z^0h^0 and e^+e^-\ra A^0h^0 in the minimal supersymmetric standard model. We compare the results from the diagrammatic calculation with the corresponding ones of the simpler and compact effective potential approximation and discuss the typical size of the differences.Comment: LaTeX, 16 pages, 8 figures appended in a uuencoded file, complete PostScript file available at http://itpaxp1.physik.uni-karlsruhe.de/prep/KA-TP-16-1995/KA-TP-16-199

    NonQCD contributions to heavy quark masses and sensitivity to Higgs mass

    Get PDF
    We find that if the Higgs mass is close to its present experimental lower limit (100 GeV),Yukawa interactions in the quark-Higgs sector can make substantial contributions to the heavy quark MS masses.Comment: 16 pages, 1 figure. Fixed a few typos (eqs (7),(34)

    Remarks on the Upper Bounds on the Higgs Boson Mass from Triviality

    Full text link
    We study the effects of the one-loop matching conditions on Higgs boson and top quark masses on the triviality bounds on the Higgs boson mass using βλ\beta_{\lambda} with corrected two-loop coefficients. We obtain quite higher results than previous ones and observe that the triviality bounds are not nearly influenced by varying top quark mass over the range measured at CDF and D0. The effects of typo errors in βλ(2)\beta_{\lambda}^{(2)} and the one-loop matching condition on the top quark mass are negligible. We estimate the size of effects on the triviality bounds from the one-loop matching condition on the Higgs boson mass.Comment: 9 pages, tar'ed gzip'ed uuencoded files, LaTex, 5 PostScript figures. To appear in Physical Review

    MSSM Higgs Boson Phenomenology at the Tevatron Collider

    Get PDF
    The Higgs sector of the minimal supersymmetric standard model (MSSM) consists of five physical Higgs bosons, which offer a variety of channels for their experimental search. The present study aims to further our understanding of the Tevatron reach for MSSM Higgs bosons, addressing relevant theoretical issues related to the SUSY parameter space, with special emphasis on the radiative corrections to the down--quark and lepton couplings to the Higgs bosons for large tanβ\tan\beta. We performed a computation of the signal and backgrounds for the production processes WϕW\phi and bbˉϕb \bar{b} \phi at the upgraded Tevatron, with ϕ\phi being the neutral MSSM Higgs bosons. Detailed experimental information and further higher order calculations are demanded to confirm/refine these predictions.Comment: 47 pages, REVTex format, 15 figures; spacing changed to reduce length, references added or moved within manuscript for clarity, some rewording, labelling corrected on two figures, results unchange

    Probing Minimal Supergravity at the CERN LHC for Large tanβ\tan\beta

    Get PDF
    For large values of the minimal supergravity model parameter tanβ\tan\beta, the tau lepton and the bottom quark Yukawa couplings become large, leading to reduced masses of τ\tau-sleptons and bb-squarks relative to their first and second generation counterparts, and to enhanced decays of charginos and neutralinos to τ\tau-leptons and bb-quarks. We evaluate the reach of the CERN LHC pppp collider for supersymmetry in the mSUGRA model parameter space. We find that values of mtg15002000m_{\tg}\sim 1500-2000 GeV can be probed with just 10 fb1^{-1} of integrated luminosity for tanβ\tan\beta values as high as 45, so that mSUGRA cannot escape the scrutiny of LHC experiments by virtue of having a large value of tanβ\tan\beta. We also perform a case study of an mSUGRA model at tanβ=45\tan\beta =45 where \tz_2\to \tau\ttau_1 and \tw_1\to \ttau_1\nu_\tau with 100\sim 100% branching fraction. In this case, at least within our simplistic study, we show that a di-tau mass edge, which determines the value of m_{\tz_2}-m_{\tz_1}, can still be reconstructed. This information can be used as a starting point for reconstructing SUSY cascade decays on an event-by-event basis, and can provide a strong constraint in determining the underlying model parameters. Finally, we show that for large tanβ\tan\beta there can be an observable excess of τ\tau leptons, and argue that τ\tau signals might serve to provide new information about the underlying model framework.Comment: 22 page REVTEX file including 8 figure

    A No-Lose Theorem for Higgs Searches at a Future Linear Collider

    Get PDF
    Assuming perturbativity up to a high energy scale 1016\sim 10^{16} GeV, we demonstrate that a future e+ee^+e^- linear collider operating at s=\sqrt{s} = 500 GeV with L=\int{\cal L}= 500 fb1^{-1} per year (such as the recently proposed TESLA facility) will detect a Higgs boson signal regardless of the complexity of the Higgs sector and of how the Higgs bosons decay.Comment: 4 pages, LaTe

    (B-L) Symmetry vs. Neutrino Seesaw

    Full text link
    We compute the effective coupling of the Majoron to W bosons at \cO(\hbar) by evaluating the matrix element of the (B-L) current between the vacuum and a W+WW^+W^- state. The (B-L) anomaly vanishes, but the amplitude does not vanish as a result of a UV finite and non-local contribution which is entirely due to the mixing between left-chiral and right-chiral neutrinos. The result shows how anomaly-like couplings may arise in spite of the fact that the (B-L) current remains exactly conserved to all orders in \hbar, lending additional support to our previous proposal to identify the Majoron with the axion.Comment: 13 pages, 1 figure, with additional explanations and clarification

    Grand Unification at Intermediate Mass Scales through Extra Dimensions

    Get PDF
    One of the drawbacks of conventional grand unification scenarios has been that the unification scale is too high to permit direct exploration. In this paper, we show that the unification scale can be significantly lowered (perhaps even to the TeV scale) through the appearance of extra spacetime dimensions. Such extra dimensions are a natural consequence of string theories with large-radius compactifications. We show that extra spacetime dimensions naturally lead to gauge coupling unification at intermediate mass scales, and moreover may provide a natural mechanism for explaining the fermion mass hierarchy by permitting the fermion masses to evolve with a power-law dependence on the mass scale. We also show that proton-decay constraints may be satisfied in our scenario due to the higher-dimensional cancellation of proton-decay amplitudes to all orders in perturbation theory. Finally, we extend these results by considering theories without supersymmetry; experimental collider signatures; and embeddings into string theory. The latter also enables us to develop several novel methods of explaining the fermion mass hierarchy via DD-branes. Our results therefore suggest a new approach towards understanding the physics of grand unification as well as the phenomenology of large-radius string compactifications.Comment: 65 pages, LaTeX, 20 figure
    corecore